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To understand the connection between single-particle optics and the optics of a closely packed surface,
controlled laboratory measurements of bidirectional reflectance distribution functions on layers of
polymer and glass spheres are carried out. The measurements are compared with predictions from five
radiative-transfer models; the Hapke’s models, the Lumme–Bowell model, the BRF algorithm of
Mishchenko et al., and the discrete ordinate radiative transfer. It is found that models of strict
numerical radiative-transfer equations (RTEs) predict measurements well in some regions but have
errors in both forward- and backward-scattering directions. The improved Hapke’s model, although it
has an anisotropic multiple-scattering term, still produces considerable errors compared with the
strict RTE. The difference can be attributed to the exclusion of a diffraction contribution in the Hapke
model. © 2005 Optical Society of America
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1. Introduction

The relationship between the surface bidirectional re-
flectance distribution function (BRDF) of closely
packed grain layers and the optical properties of the
individual particles is an important problem in many
scientific and engineering disciplines. However, there
are many unanswered questions in this problem. Spe-
cifically how well does the radiative-transfer equation
(RTE) work for closely packed particles? Are any
single-scattering features of individual grains retained
when the grains are touching? What are the effects of
surface roughness on BRDF measurements? Can in-
trinsically forward-scattering particles have a back-
scattering BRDF when aggregated?1–5 Can diffraction
be ignored when the filling factors of grain layers have
high values?2,4,5 How do analytical reflectance models
such as Hapke’s isotropic multiple-scattering approx-
imation (HIMSA),6,7 Hapke’s anisotropic multiple-
scattering approximation (HAMSA),8 and the
Lumme–Bowell (LB) model9 work compared with
strict RTE solutions such as the discrete ordinate ra-

diative transfer10 (DISORT) program and Mishchenko
et al.’s bidirectional reflection function (MBRF) algo-
rithm?11 Answers to these questions are also impor-
tant in the remote sensing of planetary surfaces12–14

and snow.15

In this study we perform controlled laboratory
BRDF measurements of the powdered surfaces of
200-�m-diameter polymer and 600-�m-diameter
glass spheres together with RTE calculations. For
these nearly monodisperse spheres, with known
particle-size distributions and real refractive indices,
we determine first the single-scattering quantities of
the particles including the phase function, single-
scattering albedo, asymmetry parameter, and scat-
tering and extinction efficiencies by using Mie
theory.16,17 Then we introduce these single-scattering
quantities into the RTE models and compare them
with the measurements.

2. Brief Outline of the Models

The models mentioned in Section 1 are chosen for this
study because they are representative and used ex-
tensively in remote-sensing applications. Strict nu-
merical RTE solutions such as DISORT and the
MBRF are widely used as benchmarks in testing
semiempirical models.8,18 On the other hand, Hapke’s
models and the LB model are approximate solutions
of the RTE but have closed-form expressions that
contain some physical quantities explicitly. We
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present the models in the form of the reflectance
factor7 (REFF) in order to compare them with mea-
surements directly. To be self-contained, unified sym-
bols are used in all models instead of their original
notation. The symbols are introduced in the order of
their appearances in the models.

The bidirectional reflectance r, BRDF, and REFF
are defined, respectively, as7

r �
dLR

dEi
, (1)

BRDF �
r

cos �i
, (2)

REFF � �BRDF �
�r

cos �i
, (3)

where dLR is the reflected radiance, dEi is the inci-
dent collimated irradiance, and �i is the incident ze-
nith angle. The REFF is convenient because it gives
a direct comparison of the reflectance of a surface
with that of a perfect Lambertian surface.

A. HIMSA Model

The HIMSA model7 solves the single scattering ex-
actly and approximates the multiple scattering as
isotropic:

REFFHIMSA(�0, �, �) �
�0

4
1

�0 � �
{[1 � B(�)]P(�)

� H(�)H(�0) � 1 }

	 S(�0, �, 
, ��), (4)

where �0, �, �, and � are the cosine of the incident
zenith, the cosine of the viewing zenith, the relative
azimuth angle, and the phase angle, respectively.
P��� is the single-scattering phase function that is
normalized to 4� throughout this work, �0 is the
single-scattering albedo, and H�x� is Chandrasekar’s
H function19 approximated by8

H(x) �
1

1 � �0x�r0 �
1 � 2r0x

2 ln
1 � x

x �, (5)

where

r0 �
1 � (1 � �0)

1�2

1 � (1 � �0)
1�2. (6)

B��� is the enhanced backscattering (hot-spot) correc-
tion factor:

B(�) �
B0

1 �
1
h tan

�

2

, (7)

where parameters B0 and h control the amplitude
and angular width of the hot spot, respectively.
S��0, �, 
, ��� is the surface-roughness correction fac-
tor; �� is the average topographic slope angle of the
surface, and it alters the local incidence and emer-
gence angles.

B. HAMSA Model

In this version of the Hapke model the single-
scattering part remains the same while the multiple-
scattering part is replaced by a more anisotropic
term. Since in this work our samples are very large
spheres where coherent backscattering20,21 is un-
likely to be observable with the instrument (see Sub-
section 3.A), we adopt the HAMSA without the
coherent backscattering correction term:

REFFHAMSA(�0, �, �) �
�0

4
1

�0 � �

	��1 � B(�)	P(�)
� M(�0, �)
, (8)

where

M(�0, �) � � (�0)[H(�) � 1] � � (�)[H(�0] � 1]
� �[H(�) � 1][H(�0) � 1], (9)

�(x) � 1 � �
n�1



AnbnPn(x), (10)

� � 1 � �
n�1



An
2bn, (11)

An � 0 n even, (12)

An �
(�1)

n�1
2

n
1 	 3 	 5 	 · · · 	 n

2 	 4 	 6 	 · · · 	 (n � 1) n odd,

(13)

and the terms bn are the Legendre expansion coeffi-
cients of the phase function:

P(�) � 1 � �
n�1



bnPn(cos �). (14)

C. Lumme–Bowell Model

The LB9,22–24 model assumes that the single scatter-
ing by a layer of particles comes from three distinct
parts: shadowing, roughness, and particle scattering.
The multiple scattering part is approximated by the
H function, as with Hapke’s model, but with the
scaled single-scattering albedo as an argument.23

Note that the original LB model paper9 does not have
an explicit expression for a multiple-scattering term
while that given in Ref. 23 has a typographic error
with the 1��� � �0� factor missing. Here we adopt the
form as a combination of Refs. 22–24:
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REFFLB(�0, �, �) � RS � RM �
�0

4
1

� � �0

	 �2�R�SP(�) � H(�, �0*)
	 H(�0, �0*) � 1	, (15)

where RS is the single-scattering term, RM is the
multiple-scattering term, and �0* is the scaled
single-scattering albedo according to the similarity
relations:

�0
* �

1 � g
1 � g�0

�0, (16)

where g is the asymmetry parameter given by

g � �cos � �
1
2 �

�1

1

P(cos �)d(cos �). (17)

�R is the surface-roughness correction factor given by

�R �
1 � (1 � q)��

1 � ��
, (18)

where q is the fraction of the surface covered with
holes and � is the mean slope of holes on a rough
surface:

� �
H
R � tan(��), (19)

where H and R are the depth and the radius of a hole,
respectively. The angular quantity � is given as

� �
(�2 � �0

2 � 2��0 cos �)1�2

��0
. (20)

The term � may be estimated for packed spheres with
certain filling factors.9 �S is the shadow hiding factor
and for spherical particles is given by9,24

�S �
y � 3�4
y � 3�2, (21)

y �
D

2.38
� � �0

(�2 � �0
2 � 2��0 cos �)1�2, (22)

where D is the volume density or the filling factor.

D. MBRF Model

The single-scattering phase function is expanded as a
Fourier series11:

P(�, �0, 
) � P0(�, �0) � 2 �
m�1

mmax

Pm(�, �0)cos(m
),

(23)

where the Fourier components of the mth order are
given by the expansion in terms of the generalized
spherical functions Pmn

s as

Pm(�, �0) � (�1)m �
s�m

Smax

�sPm0
s(�)Pm0

s(�0), (24)

and �s are coefficients in the Legendre polynomial
expansion of the phase function:

P(�) � �
s�0

smax

�sPs(cos �), (25)

where � is the scattering angle,

� � � � �. (26)

The intensity of the reflected radiation from a flat
surface is defined as

L(��, 
) � �0R(�, �0, 
)F, (27)

where �F is the collimated incident flux per unit area
perpendicular to the incident beam and R��, �0, 
� is
the bidirectional reflection function. R��, �0, 
� is ex-
panded as a Fourier series in the azimuth angle:

R(�, �0, 
) � R0(�, �0) � 2 �
m�1

mmax

Rm(�, �0)cos m
,

(28)

where the coefficients Rm��, �0� are solved by Ambar-
tsumian’s nonlinear integral equation25 once
Pm��, ��� is known:

(� � �0)R
m(�, �0) �

�0

4 Pm(��, �0) �
�0

2 �0

	�
0

1

Pm(�, ��)Rm(��, �0)d��

�
�0

2 � �
0

1

Rm(�, ��)Pm(��, �0)d��

� �0��0 �
0

1 �
0

1

Rm(�, ��)Pm(���, ��)

	 Rm(��, �0)d��d��. (29)

Thus the REFF for the MBRF is

REFFMBRF � �

L
�F
�0

� R. (30)

E. DISORT

DISORT10,26 belongs to the class of discrete-ordinate
solutions to the RTE. Among these five models only
DISORT allows layers with finite optical thickness

1 February 2005 � Vol. 44, No. 4 � APPLIED OPTICS 599



while all five allow semi-infinite layers. The RTE can
be written as

�
dL(�, �, 
)

d�
� L(�, �, 
) �

�0

4��
0

2�

d
�

	�
�1

1

d��P(�, 
;��, 
�)L(�, ��, 
�),

(31)

where � is the optical thickness. By expanding the
radiance L in terms of the Fourier series, we obtain

L(�, �, 
) � �
m�0

2M�1

Lm(�, �)cos m
, (32)

and the single-scattering phase function P in a series
of Legendre polynomials,

P(�, 
; ��, 
�) � P(cos �) � �
l�0

2M�1

(2l � 1)glPl(cos �),

(33)

and by taking advantage of the addition theorem for
spherical harmonics,19,26 we obtain

P(cos �) � �
l�0

2M�1

(2l � 1)gl�Pl(�)Pl(��)

� 2 �
m�1

l

�l
m(�) �l

m(��)cos m(
 � 
�)�,

(34)

where

�l
m(�) � �(l � m)!

(l � m)!�1�2

Pl
m(�) (35)

is the normalized associated Legendre polynomial of
the ordinary associated Legendre polynomial Pl

m���.
The RTE is split into 2M independent integrodiffer-
ential equations

�
dLm(�, �)

d�
� Lm(�, �)

�
�0

2 �
�1

1 � �
l�0

2M�1

(2l � 1)gl�l
m(�)�l

m(��)�
	 Lm(�, ��)d��. (36)

When the integral is approximated by a Gaussian
quadrature sum, the above integrodifferential equa-

tion is transformed into a system of ordinary differ-
ential equations,

�i

dLm(�, �i)
d�

� Lm(�, �i)

� �
j �0

j��N

N

wjD
m(�, �i, �j)L

m(�, �j)

	 (ı � �1, �2 . . . � N), (37)

and solved with appropriate boundary conditions.
When the incident collimated flux is specified to be
� ��0, the REFF for DISORT is then

REFFDISORT � LDISORT, (38)

where LDISORT is the DISORT code’s output radiances.

F. Remarks on the Models

Despite their very different approaches to modeling
the radiative transfer in packed surfaces, the HIMSA
and the LB model have an identical form for a smooth
(zero surface roughness and no hot-spot) surface:

REFFSmooth(�0, �, �) �
�0

4
1

�0 � �
[P(�) � HH � 1],

(39)

which is obtained by letting the filling factor (or vol-
ume density and surface density in the LB model)
approach zero and therefore

B(�) → 0, �R → 1, �S → 1 �2. (40)

Equation (39) is further reduced to the classical RTE
solution for a sparse semi-infinite medium (single-
scattering) approximation by letting H approach 1,

REFFSingle �
�0

4
1

� � �0
P(�). (41)

For isotropic scatters with P��� � 1, Eq. (41) gives the
Lommel–Seeliger law. For layers with finite optical
thickness �, the REFF in the single-scattering ap-
proximation may be given by25,27

REFFSingle �
�0

4
1

� � �0
P(�)

	 �1 � exp�� ��1
�

�
1
�0
���. (42)

The Hapke surface-roughness correction applies to
both single and multiple scattering. The LB rough-
ness factor is applied only to the single-scattering
term, thus was criticized by Hapke.28,29 If the LB
model’s roughness factor is applied to entire RTE
models, the reciprocity relation still holds; hence the
relation is physically plausible.
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Both the HIMSA and the LB models assume that,
for closely packed particulate media, the phase func-
tion does not include the diffraction peak. This is
equivalent to treating the forward scattering as in-
distinguishable from the transmitted radiation. Thus
in principle when the Mie phase function is intro-
duced into these two models, the diffraction peak
should be removed. However, this is not necessary
since the reflectance region does not include direct
forward scattering and the isotropic multiple-
scattering terms in these two models do not contain
any quantities that are derived from the phase func-
tion. In the HAMSA model8 it is not clearly stated
whether the diffraction peak should be removed from
Eqs. (8)–(14).

Mishchenko2 verified, by performing the Percus–
Yevick structural factor calculations,2,30,31 that this
assumption holds when the filling factor f roughly
exceeds 0.2. He found that the effect of packing is
especially significant at � � 0.4� �r0, where � and r0
are the wavelength and the particle radius, respec-
tively. Mishchenko and Macke4 also emphasized,
however, that there is no critical value of f before
which the diffraction contribution is 50% �f � 0� and
after which it is 0 �f � 1�. In the current study the
closely packed spheres have filling factors greater
than 0.5; however, 0.4��r0 is only �0.1°. Thus the full
Mie phase functions are to be supplied to all five
models, and the diffraction effects are discussed in
Section 5.

3. Instruments, Samples, and Measurement
Descriptions

A. Simple Goniometric Scattering Meter

To perform scattering measurements on the prepared
surfaces of packed spheres, a simple goniometric
scattering meter was built, as shown in Fig. 1. A
Melles–Griot unpolarized He–Ne laser (632.8-nm
wavelength) serves as the light source. After being
expanded by a beam expander, the light is polarized

by a linear polarizer. Next the linearly polarized
beam is split into two orthogonal polarized beams by
a CVI polarizing beam-splitting cube: One beam goes
to a monitor photodiode and the other to the sample.
By rotating the polarizing cube, incident beams with
polarizations both parallel p and perpendicular s to
the scattering plane can be achieved. The viewing
tube consists of a narrowband interference filter, a
focusing lens, and a photodiode with electronics. In
this configuration the full angular resolution is 2.9°,
which is determined by the ratio of the aperture di-
ameter �1.57 cm� to the radial distance of the aper-
ture to the sample plane �31 cm�. With a converging
lens (f � 2.77 mm) behind the interference filter the
sampled area is a circle with a diameter of 36 mm.

The alignment of the goniosystem including the
sample holder orientation and the incident and view-
ing directions is checked by a digital protractor. The
angular error is estimated to be less than 1.5°. The
measured REFF on a Labsphere nominal 99% reflec-
tance plaque agrees with previous measurements32

within 2% less than the 70° viewing angle and within
�4% greater than the 70° viewing angle.

Before and after each measurement sequence a
laser-power stability test is performed. Although the
laser-power fluctuations could be eliminated by tak-
ing a ratio of the sample and the monitor channel, it
has been found that when the warmup time is suffi-
cient the He–Ne laser fluctuations in the viewing
channel can be within 1%, and using the monitor
channel adds unnecessary noise. Before and after the
measurement dark signals are recorded, and their
average is subtracted from the measurement.

Sample holders include two polyvinyl chloride
holders with depths of 10 and 15 mm. To minimize
any bottom reflectance, black construction paper is
placed in the bottom of the sample holder during the
measurements.

At normal illumination the circular illuminated
spot on a flat sample is 13 mm in diameter, and at 60°
incidence the spot is elongated to 26 	 13 mm. Nu-
merical calculations33 show that when the beam ra-
dius is �10 times larger than the sphere radius, the
incident beam can be regarded as an infinite plane
wave. Since our largest sample are glass spheres with
a nominal diameter of 0.6 mm, this condition is com-
fortably satisfied.

B. Samples, Measurements, and Calibrations

1. Samples
Two different types of spherical particle are employed
in this study: polystyrene spheres with a nominal
diameter of 200 �m from Duke Scientific Corporation
(catalog number 4320) and silicon glass spheres with
a nominal diameter of 600 �m from Whitehouse Sci-
entific (catalog number MS0589). Major reasons for
choosing these spheres are the following: (1) Both are
commercially available and National Institute of Sci-
ence and Technology (NIST) traceable. (2) These par-
ticle sizes are commensurate with the size of natural
sediment.34,35 (3) The Mie phase functions (see Sec-

Fig. 1. Schematic of the simple goniometric scattering meter
setup. Throughout this study the incident zenith angle �i is spec-
ified to be negative. Phase angle � is specified to be positive when
opposite the incident beam.
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tion 4) of both kinds of sphere have steep drop-off
features around the rainbow region. Such character-
istics may be used as indications of the single-
scattering features in reflectance measurements of
aggregated spheres.

2. Measurement Descriptions
The current goniometer’s configurations allow the

incident light to be either p- or s-polarized while only
the unpolarized scattered radiance is collected. For
comparison with the RTE models mentioned above,
we take the average of these two incident polariza-
tions to get the unpolarized case. The spheres are
slowly poured into the sample holder to make a layer
of spheres, and the sample holder mount is slightly
rocked to settle the grains. Next the edge of a ruler is
moved in different directions on the surface of the
holder to make the surface macroscopically flat. Each
sample layer is made at least twice to obtain the
sample-to-sample variations caused by different sur-
faces.

To test for laser-interference problems, we mapped
the backscattering pattern of a single layer of the
200-�m spheres by setting a white screen behind the
laser and illuminating the sample at normal inci-
dence. As many as 10 rings, including the primary,
the secondary rainbows, and eight supernumerary
bows could be identified. The angular positions of
these rings showed good agreement with Mie calcu-
lations; thus no coherence problems should exist.

3. Calibrations
For reflectance data the radiance of the sample is

ratioed to that of a Labsphere calibration plaque with
a nominal 99% reflectance to get the REFF according
to Eq. (3). However, in reality the reflectance of a
plaque can never be perfectly Lambertian; thus a
correction is applied to the REFF as follows36:

The raw REFF may be expressed as

REFFraw �
1
2 �Ll

s

Lc
s �

Ll
p

Lc
p�, (43)

where L is the recorded radiance; s and p are s- and
p-polarizations, respectively; l and c are the sample
and the calibration plaque, respectively. The correc-
tion factor is introduced as

Corr �

1
2 (Lc

s � Lc
p)

cos (�v)
f(�v

0), (44)

where �v is the viewing zenith angle and f��v
0� is a

constant. The first part of this factor is the radiance
reflected off the calibration plaque divided by the
cosine of the viewing angle. Ideally this should be a
flat line, but we have found that this curve falls �15%
at higher viewing angles. The second part f��v

0� is a
scaling factor that brings the REFF at a specific view-
ing zenith angle to that of the value of Ref. 32. For

example, at normal incidence the REFF at the 45°
viewing zenith is 0.99, and at 60° incidence the REFF
at the 0° viewing zenith is 0.972. The final form of the
REFF is then

REFFGonio � REFFraw 	 Corr. (45)

4. Modeling Results and Comparisons with
Measurements

A. Mie Results of the Spheres

Mie calculations were done with both Mishchenko et
al.’s algorithm11,37,38 and the MieV code,39,40 and the
results agreed very well. To be consistent within this
study, all Mie-derived quantities to supply the RTE
models were calculated by the former.

The 200-�m (Duke4320) spheres have a very nar-
row Gaussian size distribution:

f(D) �
1

(2�)1 �2�
exp��

(D � D0)
2

2�2 �, (46)

where D0 � 197 �m and � � 6.1 �m (provided by
Duke Scientific). With a refractive index of 1.59 at a
632.8-nm wavelength, Mie phase functions for both p
and s polarizations are shown in Fig. 2(a). The size

Fig. 2. Mie phase functions of (a) 200- and (b) 600-�m spheres:
s-pol, p-pol, electric field of the incident irradiance perpendicular
and parallel to the scattering plane, respectively. The unpolarized
Mie phase function is their average.
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distribution of the 600-�m sample (WH0589) is fit to
a lognormal distribution38,41:

f(D) �
1

w0D
exp��

�ln D
D0

�2

2(ln � )2�, (47)

where w0 � 0.0216, D0 � 587.6 �m, and �
� 1.0186. The Mie phase functions shown in Fig. 2(b)
are calculated with a refractive index of 1.52 for sil-
icon glass.

As a first-order approximation the imaginary re-
fractive indices for both types of spheres are assumed
to be 0. This is discussed below.

B. Estimations of the Optical Thickness

In RTE calculations the optical thickness � is more
frequently used than geometric depth z. It is also one
of the inputs of DISORT. The definition of � may be
written as7,42

� � N�extz, (48)

where N is the number of identical particles per unit
volume, �ext is the extinction cross section, and z is the
geometrical depth. For a distribution of particles

� ��
0

S

N(z)��ext(z)dz � �N��exts, (49)

where

�N �
n
V �

f
4
3 �reff

3

(50)

is the size-averaged number density, reff is the size-
averaged radius, and f is the filling factor. For the
large spheres used in this study ��ext is essentially
2�reff

2; thus the optical thickness is roughly43

� �
3fs
2reff

, (51)

where s is the layer’s geometric thickness. The filling
factors for both samples have been evaluated by es-
timating the number of spheres in the sample holders
and the volumes that they occupy.

The models, other than DISORT, calculate only
reflectance from semi-infinite layers; thus �, which
can be considered optically thick for each sample, is
needed. Bohren42 has shown that a layer can be taken
as optically thick when

� �
200

1 � g � �. (52)

Layers satisfying this criterion have reflectance
within 1% of its asymptotic value. The optical thick-
nesses are listed in Table 1 along with other RTE
model input quantities for each sample. It is obvious
that both samples used in this study are much thin-
ner than the criterion of the semi-infinite. This issue
is also discussed in Subsection 4.D.

C. Estimations of the Filling Factors

Filling factors for the 200- and 600-�m spheres are
evaluated by estimating the number of spheres in the
sample holders and the volume of the holders. For the
200-�m spheres, the number is estimated to be
around 0.6, a typical value of the random close pack-
ing of monodisperse spheres.44 For the 600-�m
spheres, however, the result is 0.54. This smaller
value may be attributed to the larger spheres not
being packed as efficiently because of the larger dis-
persion in size, imperfections in shape, or the finite
size of the holder. This filling factor is still greater
than the lower limit that occurs with layers of
spheres stacked one on top of the other �f � 0.524�.

D. Effects of Absorbing Spheres and Finite Optical
Thickness

Unfortunately, accurate values of the imaginary re-
fractive indices ni of the spheres used in this study
are unavailable from their manufacturers; hence the
Mie functions are calculated first by assuming that
ni � 0; thus �0 � 1. However, any �0 values supplied
to the RTE models should be less than 1 to be phys-
ically correct,4 and this value is crucial to the RTE
results for strong multiple-scattering media. For ex-
ample, the diffuse reflectance values calculated by
DISORT varying by only �0 � 0.999 (ni � 10�6) and
�0 � 0.9999 (ni � 10�7) differ by as much as 10% at
normal incidence for the 200-�m spheres. In contrast
the Mie phase functions and the asymmetry param-
eter change by less than 0.6% and 0.1% (g
� 0.8028 for ni � 0 to g � 0.8033 for ni � 10�6),
respectively, in going from ni � 0 to ni � 10�6. Since
the ni � 10�6 value leads to an absorption coefficient17

of a � ��4�ni� ��	 � 20�m and both types of sphere
used in this study are large clear spheres, the actual
ni values for these spheres are unlikely to be much
higher than the order of 10�6.

Table 1. Parameters Used in the Modeling

Samples f s � � g �0 N NK NSTR

Duke4320 0.60 10 88.5 1000 0.8 0.999 100 100 100
WH0589 0.54 15 41.25 1111 0.82 0.99 100 100 100

Note: f, filling factor (or D, the volume density in the LB model);
s, geometrical depth of the layer (in millimeters); �, optical thick-
ness; �, asymptotic value given by Eq. (52); g, asymmetry param-
eter; �0, single-scattering albedo; N, NK, number of intervals in
the size distribution sum and the number of quadrature angles
within each N, respectively, in MBRF’s Mie algorithm; NSTR,
number of computational angles (number of streams) used in DI-
SORT. The other parameters are introduced in the text.
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The single-scattering parameters that supply the
models are chosen in the following way. First, we
verify that the Mie phase functions for a single size
[mean size D0 in Eqs. (46) and (47)] and for the size-
averaged case are the same in the sense of the overall
trend and the baseline level. This is also true in the
resultant REFF, as predicted by any of the five RTE
models when the phase functions are inserted. Then
we run DISORT with the appropriate optical thick-
ness (88.5 for the 200-�m spheres or 41.25 for the
600-�m spheres) supplied with Mie quantities calcu-
lated with varying ni values from 0, 10�8, 10�7 to as
great as 10�3 where the rainbow structures totally
disappear. These calculations are compared with the
measurements. The results indicate that the appro-
priate ni for 200-�m spheres is between 10�7 and
10�6; hence the single-scattering albedo is �0.999.
This �0 and the ni � 0 phase function is chosen for
the 200-�m spheres. For the 600-�m spheres ni is
between 10�6��0 � 0.995� and 10�5��0 � 0.95�. The
ni � 5 	 10�6��0 � 0.97� value roughly corresponds to
an absorption coefficient of 100 �m, which seems too
high from the discussions above. Thus for 600-�m
spheres we still use the phase function with ni � 0 but
�0 � 0.99 to account for the absorption effects. This
choice for the 600-�m spheres is heuristic, thus less
accurate than for the 200-�m spheres.

Recent measurements of the complex refractive in-
dex on polystyrene microspheres45 give ni

� 4 	 10�4 (corresponding to an absorption coeffi-
cient of 8000 �m) at visible wavelengths. When this
value is supplied to the Mie and RTE models, the
rainbow features in the resultant REFF are very
small in contrast to the strong features in the mea-
surements, and the predicted REFF values are much
lower than the measurements.

As mentioned above, our sample thicknesses were
not sufficient to meet the Bohren criterion42 as being
in the asymptotic region. However, calculations with
DISORT show that with �0 � 0.999 the REFF of a
� � 1000, 200-�m-sphere layer is typically within
0.5% of a � � 88.5 layer for all phase angles at the
three illumination angles, and with �0 � 0.99 the
REFF of a � � 1111, 600-�m-sphere layer is typically
less than 0.2% higher than � � 41.25 over all phase
angles at both normal and 60° illuminations. Thus
our BRDF measurements can be compared with re-
flectance models for semi-infinite layers.

E. Data

Figure 3 shows the raw REFF [Eq. (43)] of a 10-
mm-thick layer of the 200-�m spheres with p- (p-
pol) and s-polarized (s-pol) incidence at 60° zenith.
When compared with the Mie counterparts shown
in Fig. 2(a), one can seen that the reflectance curves
for the two orthogonal polarizations resemble their
respective Mie phase functions. Besides the strong
rainbow peak that appears in the s-pol, the second
rainbow peak46 around the 100° phase angle (or 40°
viewing angle in this configuration) is also present.
The peaks above the 130° phase (70° viewing angle),

however, must be caused by surface roughness
since they do not repeat consistently in repeated
measurements with different surface realizations.
The p-pol, on the other hand, exhibits only a shoul-
der around the rainbow region and remains feature-
less throughout the rest of the region, closely
resembling its p-polarization phase function. It is
also seen that the steep drop-off features on the
larger phase angle side of the rainbow present in
the Mie phase functions for both polarizations are
preserved in the respective REFF. However, many
of the Mie features present in s-polarizations such
as the peaks around the 40° phase angle disappear
in the s-pol. As we show in Section 5, these peaks
are washed out by strong multiple scattering in the
diffuse reflection region.

Both DISORT and MBRF are strict solutions of
the RTE and may give similar predictions, so we
present first a comparison study of the two. Note
that both the MBRF and DISORT converge well
before the number of quadrature angles used in the
angular integrations for solving the RTE (the vari-
able NG in the MBRF code and NSTR in DISORT)
reaches 200 for the 200-�m spheres with �0
� 0.999 described above. Since the MBRF is for semi-
infinite layers only, � � 2000 is supplied to DISORT
(although � � 1000 already appears to be the asymp-
totic value). In Fig. 4 the predictions are plotted for
the 200-�m spheres by the two models supplied
with the same Mie input at an angular resolution of
0.5° with an NG of 200 for MBRF and NSTR of 200
for DISORT. It is seen from these data that the two
models agree with each other very well in the dif-
fuse reflectance region but differ in the phase angle
range between 10° and 15°. The difference grows
with the incident zenith angle. The maximum dif-
ference is 3% (normal incidence), 5.6% (35°), and
17% (60°). In this rainbow region MBRF has fewer
oscillations than DISORT. Since the optical thick-
ness can be varied in DISORT and most of the
sample layers used in this study have finite thick-
ness, we use DISORT to represent the strict RTE
solution but keep in mind that it could be off by
several percentage points at the rainbow peaks.
Also, to compare the models, we neglect first the

Fig. 3. Raw REFF of a 10-mm-thick, 200-�m-sphere layer for two
orthogonal incident polarizations at 	60° incidence. The viewing
zenith angle in this configuration is a phase angle minus 60°.
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backscattering (or shadowing) factors and the sur-
face roughness factors in the Hapke and LB models.

Figure 5 shows a comparison of the models with
the goniometer reflectance data for the 200-�m-
sphere sample at three illumination angles. It can
be seen that DISORT is very close at phase angles
from 15° to between 55° and 110°, depending on the
illumination angle. The upper value beyond which
DISORT either underestimates or overestimates
the measured REFF is near the phase angle of 55°
for �i � 0°, the phase angle of 70° for �i � 35°, and the
phase angle of 110° for �i � 60°. All three approxi-
mation models have larger errors than DISORT.
Compared with the HIMSA, the improved Hapke
model (HAMSA) is a better approximation in the
backscattering region but as much as 10% higher
than measurements in the region in which DISORT
works well. The LB model is always too low in all
phase angle ranges, which is caused by the

similarity-relation-transformed albedo [Eq. (16)]
used in the H function. If instead the original single-
scattering albedo is used in the LB model [Eq. (15)],
one returns to Eq. (39), which is the same as the
Hapke model.

Figure 6 shows comparisons for the 600-�m
sphere sample. In this case all models other than
the LB model predict much higher values than the
measurements. While the LB model appears to
make the best prediction, in the 200-�m-sphere
case the LB model is shown to have a multiple-
scattering part that is too low. The huge difference
between the data and DISORT could possibly be
attributed to errors from (1) a nonideal condition of
the 600-�m spheres, (2) an incorrect estimate of �0 or
ni, (3) an insufficient number of spheres in a rela-

Fig. 4. Comparisons of MBRF and DISORT for a 200-�m-sphere
layer with � � 2000 and �0 � 0.999. Incident zenith angles are (a)
0°, (b) 	35°, and (c) 	60°. Fig. 5. Comparisons of goniometric measurement, DISORT, LB

model, HIMSA, and HAMSA for a 10-mm-thick (� � 88.5), 200-
�m-sphere layer. Incident zenith angles are (a) 0°, (b) 	35°, and (c)
	60°.
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tively small sample holder to produce statistically
correct RTE results. The first error source is almost
certain. Visually, with a 15	 eyepiece, the 600-�m
spheres are found to include quite a few nonspherical
grains including spheroids, broken spheres, and even
some grains that appear colored. This could also be
deduced from the data (Fig. 6) where the rainbow
feature is small at normal incidence and basically
does not exist at 60° incidence, indicating that the
600-�m spheres either contain many nonspherical
grains or have greater absorption than estimated.
For the second possible error, although in principle
one can run the Mie code and then DISORT with
various trial combinations of ni and �0 to find the best
values to fit the data, it is not helpful from the pre-
dictive point of view. For the third possibility, al-
though it is argued in Section 3 that our light spot
sizes can be regarded as infinite plane-parallel
beams, no criterion of how the RTE would work is
available at this stage. A filling factor of 0.54 for this
sample is well below the lower limit of the typical
random close packing value of 0.6 (Ref. 44); thus the
sampled scattering volume might not be statistically
big enough and local packing structures could affect
the scattering patterns. In fact we found in repeated
measurements that the 600-�m spheres have larger
sample-to-sample variations than the 200-�m
spheres. More experimental results are needed to an-
swer these questions.

5. Discussion

A. Close Packing, Multiple Scattering, and
Backscattering

Although there is evidence of many single-
scattering features, single scattering contributes
only a small fraction to the total scattered power.
Figure 7 shows the REFF of the measurement data
for the 10-mm-thick layer and the single-scattering
approximation predicted by Eq. (42) for the 200-�m
spheres at three incident angles. It can be seen that
the single-scattering contribution is several tens of
percent within the rainbow and drops down to a few
percent outside of it. This low fraction remains
quite flat until the phase angle of 100° (for 35° and
60° incidences) where it starts to climb to 
10% and
further to nearly 70% around the grazing angle (for
60° incidence). However, the REFF minimum is of
the order of 80%. This may semiquantitatively ex-
plain why, for the 200-�m spheres, the peaks in the

Fig. 6. Comparisons of goniometric measurement, DISORT, LB
model, HIMSA, and HAMSA for a 15-mm-thick (� � 41.25), 600-
�m-sphere layer. Incident zenith angles are (a) 0° and (b) 	60°.

Fig. 7. Contributions of single scattering [Eq. (42)] to total reflec-
tance at (a) normal, (b) 	35°, and (c) 	60° incidence.
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Mie phase function around the 40° phase angle have
been totally washed out while those around 100° (the
second-order rainbow) are evident in the REFF. This
also shows that since both the rainbow and the graz-
ing regions consist of larger single-scattering contri-
butions they are also more sensitive to surface
roughness caused by packing structures.

The reflectance data for both samples (Figs. 5 and
6) show that during the progression from normal to
oblique incidence, the forward scattering is never as
strong as the backscattering peak until the phase
angles are greater than 100°. This demonstrates that
intrinsically forward-scattering particles, when in ag-
gregate, can look like backscattering in reflectance
measurements2,4; thus inverting reflectance data to
retrieve single-scattering quantities should be done
cautiously. And for complete inversion, reflectance
data at larger phase angles are required.

Even for measurements for which the strict RTE
has partial success (Fig. 5) the backscattering peaks
are 
10% higher than predicted in the smallest
phase angle region (
8°). Because of mechanical in-
terference the current gonio device can detect only
scattered radiance at phase angles greater than 7°;
thus opposition effects that are normally observed in
the phase angle range of 2° to 7° are not detected
here. This backscattering range is perhaps among the
most poorly understood in radiative-transfer theory.
Neither semi-empirical model can predict this en-
hancement. Since LB’s shadowing factor [Eq. (21)] is
monotonically decreasing from a value of 0.5 at a 0°
phase angle, it cannot bring up the REFF values
predicted by DISORT. Although Hapke’s hot-spot
function in Eq. (4) can increase the REFF value’s
single-scattering part at a 0° phase angle by a factor
as great as 2, its B0 parameter seems hard to predict.

B. Diffraction

As introduced in Subsection 2.F, both the Hapke and
LB models treat diffraction as undistinguishable
from the incident flux; thus the diffraction peak
should be removed when Mie phase functions are
used. To evaluate the accuracy of this assumption, we
performed the so-called �-N approximation computa-
tions.26,47 This operation separates the phase func-
tion P into the sum of a � function to replace the
forward-scattering peak and a truncated phase func-
tion P*. Thus Eq. (33) becomes

P(cos �) � 2f�(1 � cos �) � (1 � f)

	 �
l�0

2N�1

(2l � 1)gl
*Pl(cos �), (53)

where

gl
* �

gl � f
1 � f �l � 0, . . . , 2N � 1�, (54)

f � g2N. (55)

Since in this study the DISORT calculations were
done with 100 streams (NSTR of 100 in the DISORT
code), here we take 2N � 100. In other words we
supply DISORT with the input phase functions

Ptrunc(cos �) ��
l�0

99

(2l � 1)(gl � g100)Pl(cos �) (56)

but keep the optical thickness � unchanged. Note that
although the DISORT (version 2.0 and later) inter-
nally performs the �	N transformation [Eqs. (53)–
(55)] to achieve optimum computational efficiency
and accuracy for strongly forward-peaked phase
functions,48 it also performs the Nakajima–Tanaka
intensity corrections49 to recover the accurate single
and double scatterings. Thus in contrast to supplying
DISORT with the full phase function, supplying Eq.
(56) has the diffraction peak removed.

Figure 8 shows a comparison of the �-N truncated
Mie phase function and the full Mie phase function
for the 200-�m spheres. The oscillations in the �-N
phase function are well known48,50 and get worse for
a smaller N. Figure 9 shows a comparison of DIS-
ORT, a �-N truncated Mie phase function supplied
DISORT (DISORT delta-N), and HAMSA for the
200-�m spheres. This example demonstrates the fol-
lowing: (1) The HAMSA is a significant improvement
over the HIMSA in approximating the diffraction-
removed numerical RTE solution over a rather large
phase angle range (which agrees with DISORT delta-
N). The improvement is very good in the backward
direction, and the overall agreement is the best at 35°
incidence. (2) Treating diffraction as unscattered may
not be a good approximation for this specific example,
because HAMSA (and now DISORT delta-N) overes-
timates the REFF through much of the phase angle
range for the 200-�m spheres. This specific example
also shows that the diffraction peak has a significant
effect on the multiple-scattering REFF.

Although we have demonstrated with this rather
anomalous 200-�m-sphere sample (weakly absorb-
ing, highly anisotropic) that the semiempirical mod-
els may not work as well as the numerical RTE
models from the prediction point of view, this does not
have to be true for general situations, especially for

Fig. 8. Comparison of �-N truncated Mie phase function and the
full phase function for the 200-�m spheres.

1 February 2005 � Vol. 44, No. 4 � APPLIED OPTICS 607



low albedo celestial bodies for which multiple scat-
tering is less anisotropic. Indeed, the widely used
Hapke and LB models have found a multitude of
applications especially in comparative planetary
studies.23,31,51

C. Surface-Roughness Effects

For the 200-�m sample for which the predicted RTE
is better the discrepancies between DISORT and the
measurements in the forward-scattering region could
be attributed to surface roughness because measure-
ments in this region have the largest sample-to-
sample variations. There are two competing
theories7,9,52 of the surface roughness of packed sur-
faces, and both decrease the REFF at larger viewing
angles. In this study the LB theory is chosen because
the case for the packed-sphere surface [Eq. (18)] is
well documented. Since all the measurements here
are on macroscopically flat surfaces, the term rough-

ness refers only to microscopic roughness with scales
of several particle diameters but not as large as sas-
truga on snow.53 The Hapke roughness model, which
appears to be more appropriate for large-scale rough-
ness, consists of an average tilting angle �� [in Eq. (4)]
of the local facet; thus it is hard to predict for packed
spheres. Although it is argued in Subsection 2.F that
applying the LB roughness factor to the whole RTE
model may be physically plausible, the discussions in
Subsection 5.A show that single scattering contrib-
utes a significant amount in the forward direction;
thus the LB roughness correction is applied to the
single-scattering term only.29 Specifically the
roughness-corrected DISORT is

DISORTRough � DISORT � (1 � �R)
�0

4
1

� � �0
P(�),

(57)

Fig. 10. Comparisons of DISORT, roughness-corrected DISORT,
and the measurements. Incident zenith angles are (a) 0°, (b) �35°,
and (c) �60°.

Fig. 9. Comparisons of HAMSA, DISORT, and �N-DISORT for a
10-mm-thick (� � 88.5), 200-�m layer. Incident zenith angles are
(a) 0°, (b) 	35°, and (c) 	60°.
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where �R is given in Eq. (18). In this work the filling
factor of 0.60 leads to a � value of 1.1 for the 200-�m-
sphere sample. The parameter q, the fraction of a
surface covered with holes, is specified as 1 as implied
by the discussions on the packed surface of spheres in
Ref. 9. Figure 10 shows comparisons of the measure-
ments of DISORT and LB roughness-corrected DIS-
ORT. At normal incidence [Fig. 10(a)] the correction
has little effect. For 35° and 60° incidences, although
this correction factor further reduces the DISORT
values in the backscattering direction, it improves
the agreement in the grazing angles. Since single
scattering contributes tens of percentage points in
these two regions, applying the roughness correction
to single scattering changes the intensities signifi-
cantly. Again a predictive enhanced backscattering
theory is needed to describe accurately the hot spot in
the measurements.

6. Conclusions

We have performed controlled laboratory BRDF mea-
surements on NIST-traceable nearly monodisperse
sphere samples and compared these measurements
with five radiative-transfer models. It has been found
that the numerical solution of the RTE (DISORT and
MBRF) can predict the BRDF well over a large phase
angle range, especially at oblique incidence for the
200-�m-diameter polymer spheres. Semiempirical
models such as the Hapke and Lumme–Bowell mod-
els predict less anisotropic scattering than the strict
RTE and the measurements. From the prediction
point of view, numerical RTE models such as DIS-
ORT or MBRF work much better than semiempirical
models for nearly monodisperse spherical particles.
Use of the scaled single-scattering albedo in the
multiple-scattering term in the Lumme–Bowell
model can seriously underestimate the total scat-
tered radiance. When Lumme–Bowell’s surface-
roughness correction is combined with a numerical
RTE, the REFF at oblique incidence can be predicted
very well except in the backscattering direction.

Significant single-scattering features are retained
even when the spheres are closely packed with filling
factor values higher than 0.5. However, the over-
whelming multiple scattering tends to wash out some
of the sharp features present in single scattering.

The current study suggests that more extensive
reflectance measurements on samples with known
single-scattering properties are desired to test fur-
ther the current scattering models. More RTE mod-
eling efforts, especially applicable to high-density
media, can also be appropriate. It is also anticipated
that diffraction effects must be considered in order to
model the particle scattering more accurately.

This study was supported by the Ocean Optics pro-
gram at the Office of Naval Research. We thank
Howard Gordon for discussions during this study, Al
Chapin for help constructing the goniometric scatter-
ing meter, and Michael Mischenko for communica-
tion on his BRDF model. The constructive comments

from two anonymous reviewers have significantly im-
proved the quality of this paper.
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